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1. IntrodutionA ouple of years ago, the present author and Charles Thorn initiated aprogram of studying �eld theory in the planar limit by reformulating it as aloal theory on the world sheet [1℄. This new formulation provided a freshapproah for takling some of the old standing problems. The �eld theorymost intensively studied so far is massless �3 theory [2-6℄, although Thornand ollaborators later extended the world sheet approah to more realistimodels [7-9℄. Apart from providing a new insight into �eld theory, the worldsheet formulation enables one to do dynamial alulations, using the mean�eld approximation. The most interesting result so far to ome out of themean �eld method was the emergene of a string piture from the sum ofthe planar graphs in the �3 theory. Of ourse, there are various aveats: Themodel is unphysial and in fat unstable, and the reliability of the mean �eldapproximation is open to question. There are also various tehnial problemswhih were only partially overome in [6℄. In spite of all the drawbaks, wefeel that an important step forward has been taken.In this artile, instead of summing �eld theory diagrams, we onsider thesum of planar bosoni open string diagrams, and we show that the mean �eldmethod is also appliable to this ase. We list below the main motivationsfor this generalization:1) Some of the tehnial problems enountered in summing �eld theory dia-grams are absent in the ase of the string diagrams. In fat, summing stringsturns out to be simpler than summing �3 graphs.2) Assuming that the zero slope limit of the string theory is some �eld theory,one an indiretly reover the �eld theory sum from the string sum by takingthe zero slope limit.3) The string sum is of interest in itself; it may enable one to investigateproblems suh as tahyon ondensation [10℄.The main results to emerge from this investigation are the following:After the summation, a new string emerges, whose slope is greater than theoriginal slope. The dynamial mehanism for this hange is what we all theondensation of the string boundaries. What happens is that the boundariesbeome dense on the world sheet, hanging its texture. This phenomenonwas already observed in the ontext of the �3 theory [2-6℄; in fat, in thisrespet, the string and �eld theory alulations are remarkably similar. Theruial point is that even after the initial slope is set equal to zero, the �nalslope after the summation remains �nite. Sine the zero slope limit of string1



theory is generally believed to be a �eld theory, this result supports the ideaof string formation in �eld theory.All of this, of ourse, depends ruially on the validity of the mean �eldapproximation. In addition, there are some questions on the meaning of thezero slope limit. Usually, in taking the zero slope limit, the vetor mesonis kept at zero mass, and the heavy partiles deouple. The resulting �eldtheory is therefore a vetor (gauge) theory. The existene of the tahyon,however, throws some doubt on this piture; in this limit, the tahyon be-omes in�nitely heavy and therefore in�nitely destabilizing. Clearly, it isdesirable to generalize the approah developed in this paper to the tahyonfree superstring theory, where this problem is absent. The present artile anbe thought of as a warmup exerise for this future projet.In setion 2, we briey review the Feynman graphs in the mixed lightonevariables [11℄ and the and the loal �eld theory on the world sheet whihgenerates these graphs [1-3℄. We also disuss the transformation propertiesof various �elds under a speial Lorentz boost, whih manifests itself as asale transformation on the world sheet.The tehnology introdued in setion 2 for summing over �eld theorygraphs will turn out to be exatly what is needed later on for summing overplanar strings in setion 3. As it turns out, the ation on the world sheetthat reprodues the string sum an be ast in a form very similar to theorresponding ation for �eld theory by means of a duality transformation.This ation is then the starting point of the mean �eld method developedin setion 4 from the point of view of the large D limit, where D is thedimension of the transverse spae. Part of this setion is in the nature of areview, sine there is a lot in ommon here with referenes [2-6℄, where themean �eld method was applied to the �3 �eld theory. The setion ends witha disussion of how to de�ne uto� independent parameters from the uto�dependent ones.In setion 5, the mean �eld method is applied to the alulation of theground state of the model. The equations determining the ground state havetwo possible solutions, whih we all the (+) and (�) phases. The (+) phasedesribes the original perturbative sum of the strings. The (�) phase, whihhas lower energy and therefore is the true ground state, is the phase wherethe string boundaries have formed a ondensate on the world sheet. We showthat, as a result of this ondensation, a new string is formed, with a slopegreater than the slope of the original string. This new slope remains nonzero even when the initial slope is set equal to zero. Identifying the zero2
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Figure 1: The propagatorslope limit of the string with �eld theory, we onsider this result as a strongindiation of string formation in �eld theory.Finally, we disuss our results in setion 6, and summarize our onlusionsand point out some future diretions of researh in setion 7.2. A Brief ReviewIn this setion, we present a brief review of the results obtained in refer-enes [1-6℄. In this work, starting with the world sheet representation of thesum of the planar graphs of the massless �3 �eld theory [1-3℄, the groundstate energy of the system was alulated in the mean �eld approximation.It was found that, subjet to this approximation, the dynamis favors stringformation.The starting point of the mean �eld alulation is the light one repre-sentation of the salar propagator [11℄�(p) = �(�)2p+ exp �i� p2 +m22p+ ! ; (1)where p+ = (p0+ p1)=p2 and � = x+ = (x0+ x1)=p2. Here the supersripts0 and 1 label the timelike and the longitudinal diretions, and the transversemomentum p lives in the remaining D dimensions. The propagator is rep-resented by a horizontal strip of width p+ and length � on the world sheet(Fig.1). The solid lines that form its boundary arry transverse momenta q13
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τFigure 2: A typial graphand q2 owing in opposite diretions so thatp = q1 � q2:More ompliated graphs onsist of several horizontal line segments (Fig.2).The �3 interation takes plae at the beginning and at the end of eah seg-ment, where a fator of g (the oupling onstant) is inserted. One has thento integrate over the position of the verties and over the momenta arriedby the solid lines.It was shown in [2,3℄ that the light one Feynman rules skethed abovean be reprodued by a loal world sheet �eld theory. The world sheet isparametrized by the oordinate � along the p+ diretion and � along the x+diretion, and the transverse momentum q is promoted to a bosoni �eldq(�; �) on the world sheet. In addition, two fermioni �elds b and , eahwith the D=2 omponents (assuming that D is even), are needed. The ationon the world sheet for the massless theory is given byS0 = Z p+0 d� Z d� �b0 � 0 � 12q02� ; (2)where the derivative with respet to � is represented by a dot and the deriva-tive with respet to � by a prime. Also, one has to impose the boundaryonditions _q = 0; b =  = 0; (3)on the solid lines. These boundary onditions an be implemented by in-troduing Lagrange multipliers y, �b and � and adding suitable terms to the4



ation. Sine ghosts will not be needed in what follows, from now on, we willdrop them. The ation with the boundary onditions inluded, but withoutthe ghosts, reads S = Z p+0 d� Z d� ��12q02 + �y � _q� : (4)Here the �eld � is a delta funtion on the boundaries and it vanishes in thebulk: it is inserted to ensure that the boundary ondition is imposed only onthe boundaries. However, with this insertion, the part of the integral overy that has support in the bulk diverges, sine the integrand over this regionis independent of y. To avoid this problem, we add a Gaussian term to theation whih uts o� the divergene:S ! S + Sg:f ;Sg:f = Z p+0 d� Z d� ��12�2��y2� ; (5)where � is a onstant and �� is omplimentary to �: it vanishes on the bound-aries and it is equal to one everywhere else. It was pointed out in [5,6℄ thatthis an be thought of as a gauge �xing term. In its absene, the ation isinvariant under the gauge transformationy! y + �� z;where z is an arbitrary funtion of the oordinates. It may seem that wehave introdued a new parameter � into the model, but we will see in setion6 that this new parameter an be absorbed into the de�nition of the uto�parameters that will be needed shortly.It is possible to give an expliit onstrution for the �elds � and �� in termsof a fermioni �eld on the world sheet. To see how this works, it is best todisretize the � oordinate into segments of length a. This disretizationis pitured in Fig.3 as a olletion of parallel line segments, some solid andsome dotted, spaed distane a apart. The boundaries are marked by thesolid lines, and the bulk is �lled with the dotted lines. Assoiated with theselines, there are a two omponent fermion �eld  i(�n; �) and also its adjoint� i, where, �n = na, is the disretized � oordinate. The �eld � 1 reates adotted line and � 2 a solid line out of vauum, and  1;2 annihilate these lines.� and �� an now be written as� = 12 � (1� �3) ; �� = 12 � (1 + �3) ; (6)5



Figure 3: Solid and dotted linesand the fermioni ation is given bySf = Xn Z d� �i � _ � g � �1 ��=na! Z p+0 d� Z d� �i � _ � g � �1 � : (7)Here, the �rst line represents the ation in terms of the disretized fermionsand the seond line the orresponding ontinuum limit. The �rst term in theation orresponds to free fermion propagation along the � diretion, andthe seond term to interation taking plae when there is transition from adotted line to a solid line or vie versa. We will work with both the disreteand the ontinuum pitures; the disrete version will be partiularly usefulin regulating the model. Thus the parameter a will serve as one of our twouto�s. It is important to notie that there is a hange in the normalizationof the fermion �eld in passing from the disrete to the ontinuum piture.This is beause there is a fator of a involved in onverting a sum into anintegral: aXn ! Z d�;whih means that the fermion �elds should be saled as ! 1pa ; � ! 1pa � ; (8)in going over to the ontinuum normalization.As we mentioned earlier, to reprodue all Feynman graphs, one has to sum(integrate) over all possible positions of the solid lines (boundaries). It an6



readily been seen that summing over the two omponents of the fermion �eldat eah point on the world sheet is equivalent to summing over all possiblepositions of the boundaries. Therefore, the introdution of the fermioni �eldenables one, at least formally, to sum over all planar Feynman graphs of themassless �3 theory, and the following world sheet ation , gotten by addingthe eqs.(4),(5) and(7), provides a ompat expression for this sum:S = Z p+0 d� Z d� ��12q02 + �y � _q� 12�2��y2 + i � _ � g � �1 � ; (9)where � and �� are given by eq.(6).There is, however, a problem with the above ation: It fails to reproduethe prefator 1=(2 p+) in eq.(1) for the propagator, unless, g, instead of beinga onstant, is allowed to depend on �. In [6℄, it was shown how to take thisdependene into aount within the mean�eld approximation. We will ignorethis problem, sine we will see later that this ompliation does not arise insumming over strings.Finally, we would like to disuss the behaviour of various �elds under thesaling of oordinates, whih is intimately onneted with Lorentz invariane.In the light one setup we have, the only Lorentz transformation that is stillmanifest is generated by the boost along the singled out diretion labeled by1. Under this boost, x+ and p+ sale asx+ ! u x+; p+ ! u p+;where u parametrizes the boost. If under this saling, the �elds transform asq(�; �)! q(u�; u�); y(�; �)! y(u�; u�); (�; �)! pu (u�; u�); � (�; �)! pu � (u�; u�); (10)then the ation given by eq.(9) is invariant exept for the interation andthe gauge �xing terms. These two terms beome invariant, at least formally,only if we also require that g ! u g; �2 ! u�2: (11)It is somewhat unusual to require onstants in an ation to transform, andone may worry that Lorentz invariane is in danger. We will see later on howthis problem is resolved. 7



This �nishes the review of the massless �3 theory on the world sheet. Wewill not review the alulation of the ground state of this model in the mean�eld approximation given in referene [6℄, sine in any ase, the mean �eldmethod will be developed in the ontext summation of planar string graphsin the next setions.3. String SummationWe start with the open bosoni string in the light one piture, withU(N) Chan-Paton fators. Taking the large N limit piks the planar graphs.For simpliity, the length of the world sheet in the � diretion is taken tobe in�nite, and periodi boundary onditions at � = 0 and � = p+ areimposed, where p+ is the total + omponent of the momentum owing intothe world sheet. We will also use p+ freely to denote the + momentumowing into individual strings; it will be lear from the ontext whih p+ ismeant. The above setup has the advantage of being traslation invariant alongboth the � and � diretions, whih simpli�es the subsequent alulationsonsiderably. Fig.2, whih pitured a �3 �eld theory graph, applies equallywell a general planar open string graph, with the boundaries of individualpropagating strings again marked by the solid lines (see, for example, [12℄).Therefore, the fermioni ation introdued in the last setion for summingover the graphs of the �3 theory, works just as well for summing over planaropen string graphs. Of ourse, there are some di�erenes between �eld theoryand string theory pitures. For example, the ation S0 for the free stringpropagator is now given byS0 = Z p+0 d� Z d�  12 _x2 � 12�2x02! : (12)Comparing with eq.(2), we see that the transverse momentum q is replaed bythe transverse position x, and there an additional term involving a derivativewith respet to time. We have also introdued an adjustable slope �=�sine we are ultimately interested in the zero slope, or the �eld theory limit.Furthermore, the boundary ondition on the solid lines is now di�erent: TheDirihlet ondition (eq.(3)) is replaed by the Neumann onditionx0 = 0: (13)The fermioni part of the ation is unhanged. The total ation is therefore8



given byS = Z p+0 d� Z d�  12 _x2 � 12�2x02 + �y � x0 � 12�2��y2 + i � _ � g � �1 ! :(14)Here, just as in eq.(9), the Lagrange multiplier y enfores the boundary on-ditions, and the term proportional to �2 is inserted to ut o� the divergentintegral over y in the bulk. This world sheet ation then provides a ompatexpression for the sum of planar open string graphs. We note that, unlikein the ase of �3 �eld theory, where a prefator in the propagator was miss-ing , the string propagator of eq.(12) is exat. Therefore, the ompliationdisussed following eq.(9) does not arise, and g an simply be taken to bea onstant. An additional simpli�ation is the absene of the ghost �elds band  (see eq.(2)). From this point of view, the sum over string graphs looksonsiderably simpler than the sum over �eld theory graphs.In order to failitate the omparison with �eld theory, we would like toonvert (14) into a form as lose to eq.(9) as possible. This will involve aduality transformation whih makes the following interhanges:x$ q; x0 = 0$ _q = 0: (15)The �rst step of the duality transformation is to integrate over x in eq.(14):S ! Sf + Sg:f + 12 iD Tr ln ��2�2� � �2��+ �22 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) ��(�y)�� ��0(�y)�0� 0 ;(16)where Sf and Sg:f are given by eqs.(7) and (5), and the Green's funtion Gsatis�es (�2�2� � �2�)G(��; �0� 0) = Æ(� � �0)Æ(� � � 0): (17)We note that, beause of the translation invariane on the world sheet, theGreen's funtion depends only on the oordinate di�erenes ���0 and ��� 0.Next, we integrate the � derivatives by parts, and use the translationinvariane of the Green's funtion and the de�ning equation (17) to arrive atS = Sf + Sg:f + 12 iD Tr ln ��2�2� � �2��+ �22 Z p+0 d� Z d��2 y29



+ �42 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) �� (�y)�� �� 0(�y)�0� 0:(18)In order to have a sensible � ! 0 limit in this equation, we �rst sale y byy! y=�2;and rewrite it by introduing an auxiliary variable q:S = Sf + Sg:f + 12�2 Z p+0 d� Z d��2 y2+ Z p+0 d� Z d� �12�2 _q2 � 12q02 + �y � _q� : (19)This ation is quite similar to the world sheet ation for �3 (eq.(9)) andin fat oinides with it in the zero slope limit � ! 0, exept for the termS 0 = 12�2 Z p+0 d� Z d� �2 y2;whih blows up in this limit. We will now argue that this term should beabsent. In fat, our starting point, eq.(14), was not quite orret; in theation S, the term S 0 should have been dropped. This point is perhaps madelearer by onsidering an eletrostati analogy. The Lagrange multiplier ywhih enfores x0 = 0 on the boundaries an be thought of as a line hargeindued by the boundary ondition. It is easy to see that S 0 is the (diver-gent) eletrostati self energy of the line harge in question. On the otherhand, the Lagrange multiplier y was introdued solely to enfore the Neu-mann boundary onditions; the indued eletrostati energy is an additionalboundary term whih is absent in the usual treatment of the open string. Itshould therefore be dropped. As a further hek, onsider the on�gurationwith two eternal boundaries at � = 0 and � = p+: For this simple ase,� = Æ(�) + Æ(� � p+) and, after saling y by 1=�2, the last term in eq.(18)redues toS ! 12 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) �� (y)�� �� 0(y)�0� 0: (20)The funtional integral over y an be done, and after a simple alulationwhih we will not present here, the orret free propagator for the open stringis reprodued. This justi�es the dropping of S 0 from the world sheet ation.10



4. The Mean�eld CalulationThe mean�eld alulation we are going to present here is very similar tothe treatment for the �3 theory given in [2-6℄. There are, however, someimportant di�erenes, whih we will point out as we go along. The startingpoint is the world sheet ation, derived at the end of the last setion, whihwe write in full:S = Z p+0 d� Z d� �12�2 _q2 � 12q02 + �y � _q� 12�2��y2 + i � _ � g � �1 � :(21)Ultimately we will be interested in the � ! 0 (zero slope) limit, whih willget us bak to �eld theory, but we will study this limit only within theframework of the mean�eld method. The reason for this indiret approahis that if one naively sets � = 0 in the above expression for S, one does notquite get the orret �eld theory result. For example, the ghost �elds b and are missing and also there is the problem of the missing prefator in thepropagator disussed following eq.(9). Later on, we will argue that the naive� ! 0 limit an be quite singular, but that a smooth limit an be de�nedwithin the framework of the mean �eld method.It is onvenient to view the mean �eld approximation as the large Dlimit of the �eld theory de�ned on the world sheet, where D is the numberof transverse dimensions. We hasten to add that this is merely a onvenientway of doing the orret bookkeeping; one an set D to any desired valueat the end of the alulation. The idea is to ast the ation into a formproportional to D and take the large D limit by the saddle point method.This is the standard way of solving for the anologous large N limit of soalled vetor models [13℄. Following [5,6℄, we introdue the extra term �Sin the ation:S ! S +�S;�S = Z p+0 d� Z d� ��1(D�1 � y � _q) + 12�2(D�2 � y2)� : (22)Integrating over �1;2, all we have done is to rename the omposite �elds y � _qand y2 as D�1 and D�2. The fators of D are natural sine eah omposite�eld is the sum of D terms. The Gaussian integral over y is easily done, withthe result,S + �S ! S1 + S2 + S3; 11



S1 = Z p+0 d� Z d� �12(�2 + �21=�2) _q2 � 12q02� ;S2 = D Z p+0 d� Z d� ��1�1 + 12�2�2� ;S3 = Z p+0 d� Z d� �i � _ � g � �1 + D2 (�� �  � �+ � �3 )� ; (23)where, we have de�ned, �� = ��1 + 12�2�2:Some of the terms in this equation an be further simpli�ed. We ob-serve that the operator �  represents the loal fermion density. Sine thereis always one fermion on eah horizontal line, independent of whether it isdotted or solid, one an set this operator equal to unity in the piture wherethe � oordinate is disretized. On the other hand, in the ontinuum nor-malization, taking into aount the saling given by eq.(8), one an insteadset �  = 1=a: (24)After this substitution, �� beomes a Lagrange multiplier, enforing theonstraint �2 = �2(�1 + 1=a): (25)With these simpli�ations (eqs.(24) and (25)), the world sheet ation be-omes, S = Z p+0 d� Z d��12A2 _q2 � 12q02 + �(�+ 1=(2a))+ i � _ �Dg � �1 � D2 � � �3 �; (26)where, A2 = �2 + �2�2(�+ 1=a) ; (27)and we have saled the oupling onstant by D,g ! D g; (28)in order to have an ation that is proportional to D in the large D limit.Also, to simplify writing, we have set�1 = �; �+ = �:12



It is important to note that after summing over strings, the slope parameterhanged from � for the free string to the dynamial variable A. We will laterompute the ground state expextation value of A, and show that it an di�erfrom �.Before losing this setion, we would like to stress that the parametersso far introdued that de�ne the model are in general uto� dependent bareparameters. We already have one uto� a, the spaing of the grid along the� diretion, and a0, another grid spaing along the � = x+ diretion will soonbe needed in order to regulate the integral over q. How are the renormalizedparameters, whih should stay �nite as the uto�s are removed by lettinga! 0; a0 ! 0;to be de�ned? We will not address the problem of renormalization in anydetail here3, but one obvious ondition is to demand that the renormalizedparameters be invariant under the saling transformation disussed at theend of the setion 2. Sine the sale transformation is the same as a speialLorentz transformation, this is learly neessary for Lorentz invariane. Theidea is then to de�ne new sale invariant parameters by multiplying themwith appropriate powers of a and a0. The slope �, whih has the dimensionof inverse mass squared, is already sale invariant. We also note that a anda0 have the saling properties (eq.(10)) and the dimensions of p+ and x+respetively, so that the ratio a=a0 = m2; (29)is sale invariant and has the dimension of mass squared. We will hold thisratio �nite and �xed in the limit of a and a0 going to zero. Therefore, there isonly one uto�, say a, and a mass parameter m in the problem. Eventually,we will onsider the limit � ! 0 limit, and m will then be the only mass leftin the model to set the mass sale.In addition to �, a and a0, there are two more onstants in the problem:The oupling onstant g and the gauge �xing parameter �. We trade themfor sale invariant onstants �g and �� by de�ning��2 = �2a02a ; �g = ga0� ; (30)3See [14℄ for an investigation of renormalization and Lorentz invariane in the lightone formulation. 13



where the fator of � is introdued for later onveniene. There was atu-ally an ambiguity in the de�nition of the barred onstants beause of theavailability of the sale invariant parameter m; we �xed this ambiguity byrequiring �g and �� to be dimensionless. We shall see in the next setion thatthe slope of the interating string is expressible in terms of these new on-stants, without any expliit dependene on the uto�. This will provide somejusti�ation for alling them renormalized onstants.5. The Ground State Of The ModelIn this setion, the ground state of the model will be determined byminimizing the energy of the system. So far, everything has been exat: Noapproximations were made, for example, in deriving eq.(23). Of ourse, weare unable to do an exat alulation, so to make progress, we have to appealto the large D limit. In this limit, the �elds � and � are treated as lassialquantities, to be alulated by the saddle point method. On the other hand,q,  and � are still full quantum �elds, to be integrated over funtionally.In other words, in the leading large D limit, � and � are to be replaed bytheir ground state expetation values�0 = h�i; �0 = h�i:In order to avoid exessive notation, from now on, we will drop the subsriptzero, so that � and � will stand for the expetation values of these �elds.At this point, translation invariane along both the � and � diretionsomes in handy. It allows us set � and � equal to onstants independentof the oordinates � and � . This means that A is also independent of theoordinates, and therefore the integrals over q,  and � in the ation Sof eq.(26) an be done expliitly. Instead of evaluating a given ation Sdiretly, we �nd it more onvenient to ompute the orresponding energy Eand express S in terms of E by means ofS = �i(�f � �i)E;where (�f � �i) is the (in�nite) time interval. For example, the result ofarrying out the integral over q in eq.(26) an be expressed asS1 = iD2 Tr ln �A2�2� � �2�� = �i(�f � �i)E(0); (31)where E(0) is the zero point energy of the free string. Similarly, the result ofdoing the  and � integrations an be expressed in terms of the fermioni14



energy Ef . Adding up, the total energy orresponding to S in eq.(26) isgiven by E = E(0) + Ef � p+� (�+ 1=(2a)): (32)One point should be lari�ed here. What we have alled the energy E is reallythe light one energy p�. Beause of the periodi boundary onditions, thetotal transverse momentum is zero, and the invariant mass squared M2 ofthe system is given by M2 = p+E:The next step is to evaluate E(0) and Ef . Sine E(0) is well known fromthe standard alulation of the Casimir e�et, we only remind the reader ofthe steps involved. The regulated zero point energy is given byE(0) = D 1X0 Ek exp(�Ek=�); (33)where Ek is the zero point energy of the k'th SHO mode,Ek = 2�kp+ ; (34)and we have introdued an exponential regulator with the parameter �. Theleading two terms in the limit �!1 are given byE(0) ! D A�2 p+2� � �3Ap+! : (35)Of ourse, any other smooth regulator that depends only on En gives thesame result.The regulator � ats as a uto� in energy; it is related to a0, the spaingof the grid in the onjugate variable � , bya0 = 2�� ;and replaing � by a0 in eq.(35) givesE(0) = 2�D p+A=(a0)2; (36)where we have kept the uto� dependent term and dropped the �nite one. Inalulating the Casimir e�et, one does the opposite: The uto� dependent15



term is subtrated and the �nite term is kept. Here, this term, through A,depends on the dynamial variable � (eq.(27)), and there is no way to anelit by introduing a onstant ounter term, independent of the dynamialvariables. In fat, sine the uto� dependent term dominates over the �niteterm, we have dropped the latter.The fermioni energy Ef is evaluated by diagonalizing the orrespondingHamiltonian Hf = Xn H(n);H(n) = D �12� � �3 + g � �1 ��=na ; (37)whih has been regulated by disretizing �. We have already remarked that �(and of ourse, also g) is a onstant, and therefore, H(n) redues to a onstanttwo by two matrix in the two dimensional spae spanned by � i:H(n) !  �=2 gg ��=2 ! : (38)The two eigenvalues of this matrix ,E� = �12q�2 + 4g2;have to be multiplied by the number of points forming the � grid, p+=a, inorder to obtain the total fermioni energy:Ef;� = p+2aq�2 + 4g2: (39)Notie that the fermioni energy has two possible values. Clearly, the hoie(�) orresponds to the ground state, but we will also be interested in theother possibility.Putting together eqs.(32),(35) and (39), we have the following expressionfor the total energy:E� = Dp+ 2�a02vuut�2 + �2�2(� + 1=a) � 12aq�2 + 4g2� 12�(2�+ 1=a)!: (40)16



As explained earlier, we are looking for the saddle point of this expression inthe variables � and �. The saddle point satis�es,�E��� = 0; �E��� = 0:The �rst equation determines �:� = �g 1 + 2a�p�a�� a2�2 ;and using this result, the � dependene of the energy an be eliminated,leaving it as a funtion of only �. Before writing down the result, it is on-venient to replae � by a uto� independent and dimensionless new variablex through x = �a�; (41)and the onstants � and g by their uto� independent ounterparts �� and �gthrough eq.(30). After these substitutions, the expression for the energy isgiven by E� = 2�D p+aa0 �q�2m4 + x2=(1� x)� �gpx� x2� : (42)We pause briey to disuss the physial signi�ane of x. By omputingthe eigenvetors of the matrix (38), it is easy to show that [6℄,12h � (1� �3) i = h�i = x; 12h � (1 + �3) = h��i = 1� x; (43)where hi represents the ground state expetation value. This is in the dis-retized version of the world sheet; in the ontinuum version, x and 1 � xshould be replaed by x=a and (1�x)=a. Therefore, in the disrete version, xis the average probability of �nding a spin down fermion on the world sheet.By the de�nition, this is the same as the average probability of �nding asolid line. Conversely, 1 � x is the average probability of �nding a dottedline. From this probability interpretation, it is lear that0 � x � 1: (44)We should emphasize that, for the probability to be well de�ned, it wasimportant to have a disretized world sheet, with the grid spaing a kept�xed. 17



The next step is to �nd the minima of E� as a funtion of x. This is easyin the ase of E+: It has a minimum at x = 0, with the valueE+ = 2�D p+�m2aa0 : (45)The true minimum is, of ourse, the minimum of E�. The value of xm thatminimizes E� annot be found analytially, but one an get approximateanswers in the two interesting limits: �g � 1 (weak oupling), and �g � 1(strong oupling). We have also to distinguish between two ases, dependingon whether the initial slope is non-zero (�m2 6= 0), or it is zero (�m2 = 0).Taking �m2 6= 0 and �g � 1, to leading order in �g, the minimum is given by,xm �  �m2�g2 !2=3 ;E�;m � 2�D p+aa0 ��m2 � (2)�1=3(�g)4=3(�m2)1=3� : (46)We see that, in the weak oupling limit, xm is small and the minimum ofE� is less then the minimum of E+, as expeted. On the other hand, in thestrong oupling limit, �g � 1, xm approahes 1=2:xm � 1=2� 34�g ��2m4 + 1=2��1=2 ;E�;m � ��D p+aa0 �g: (47)Now let us onsider the ase of zero slope for the free string, �m2 = 0. inthe weak oupling limit, the minimum is given byxm � �g2=4; E�;m � ��D p+2aa0 �g2; (48)and in the strong oupling limit byxm � 1=2� 32p2�g ; E�;m � ��D p+2aa0 �g2: (49)From the above results, it is lear that the ases of non-zero and zeroinitial slope are qualitatively similar. In both ases, xm ranges from zero to1=2 as the oupling onstant �g varies from zero to in�nity. The funtion,f(x) = aa02�D p+ E� = q�2m4 + x2=(1� x)� �gpx� x2;18
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Figure 4: The plot of f(x) against x for �m2 = 10 and �g = 1is plotted against x for �m2 = 10, �g = 1 and for �m2 = 0, �g = 1, in Figs.4and 5 respetively.6. Disussion Of The ResultsIn the last setion, we have seen that:1) There are two saddle points of the model, with ground state energies E+and E�. The true ground state of the model orresponds to E�, whih isalways less than E+. We will all the �rst solution the (+) phase and theseond one the (�) phase.2) The minimum of E+ is realized at xm = 0, whereas the minimum of E�is at some value of xm that satis�es0 < xm < 1=2:3) These statements are true for both �nite initial slope �, and also in thelimit � ! 0.We argued in the last setion, following eq.(43), that x represents the av-erage probability of �nding a solid line on the disretized world sheet. Sinethe solid lines represent the boundaries, in e�et, x measures the averagedensity of the string boundaries. For the perturbative sum over strings thatwe started with, we expet xm to be zero, sine at eah order of perturbation,the boundaries form a set of measure zero. It is then natural to identify thesolution orresponding to the (+) phase, whose minimum is at xm = 0, with19
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Figure 5: The plot of f(x) against x for �m2 = 0 and �g = 1the perturbative string sum. In ontrast, in the (�) phase, where xm 6= 0,the boundaries form a dense set on the world sheet. We will all this phe-nomenon, whih annot be realized in any �nite order of perturbation, theondensation of string boundaries. The order parameter that distinguishesbetween these two phases is x, the expetation value of the omposite oper-ator � (eq.(43)). The statements made above are quite general, independentof any approximation sheme. Without a dynamial alulation, however, wedo not know whih of the phases has the lower energy. We have seen abovethat, at least in the mean �eld approximation, the (�) phase, in whih theboundaries have ondensed, has the lower ground state energy.At the end of the last setion, we studied the dependene of xm in the (�)phase on the oupling onstant �g, and found that xm 6= 0 for all non-zero �g.It is at �rst surprising that ondensation of boundaries takes plae even atsmall �g, but we have to remember that the original oupling onstant g hasalready been saled by a fator of D (eq.(28)). The mean �eld approximationis based on the limit D ! 1, and in this limit, even small values of �g maygive rise to large values of g. On the other hand, it is easy to understand whathappens for large �g. In this limit, the fermioni energy Ef (seond term ineq.(42)), whih is proportional to �g, dominates, and the minimum of this termis at xm = 1=2. The limiting value of xm = 1=2 is also easy to understand:The large oupling onstant limit energetially favors a maximum density ofstring verties. Sine verties onvert a solid line into a dotted line and vie20



versa, it is advantageous to ip between solid and dotted lines as often aspossible. It is easy to see that this orresponds to an equal density for thesolid and dotted lines, namely, x = 1=2.It was pointed out earlier that, after the summation over free stringsis arried out, the free string slope �=� is replaed by the A=� . This isa utuationg dynamial variable, but we ould de�ne an average slope interms of the ground state expetation value of A. Replaing � and � ineq.(27) by �� and x through (30) and (41) giveshA2i = 1m4  �2m4 + x2m��2(1� xm)! : (50)For the (+) solution with xm = 0, the average slope after the summation isthe same as the free string slope, whih is onsistent with the perturbativepiture. On the other hand, the (�) solution, with xm 6= 0, gives a slopelarger than the free slope. So what emerges is a new string with a largerslope, and also, of ourse, with a more ompliated struture. We an alsosee from the above equation that �� is a redundant parameter; one an absorbit into the de�nition of m by rede�ning one of the uto� parameters a or a0.To show that A beomes a genuine dynamial variable, one has to go tonext to leading order in the large D limit. We will not go into the detailshere, sine the alulation is almost idential to the analogous one in thease of �eld theory, given in referenes [5,6℄. The end result is that, a kinetienergy term in the ation,S(2) = D ln(2�p+=a0)8� (hA2i)3=2 Z p+0 d� Z d� �hA2i (��A)2 � (��A)2� ; (51)for A is generated, and so this variable beomes truly dynamial. What hap-pens here is quite similar to what happens in some other two dimensionalmodels: An auxiliary lassial variable aquires kineti energy term and be-omes truly dynamial when one loop ontributions are taken into aount[16,17℄.Let us now onsider the limit � ! 0. As noted earlier, this limit is ratherdeliate in the (+) phase; for example, naively letting � ! 0 diretly ineq.(21) is not orret. It is easy to spot the problem: In this phase, as � andxm go to zero, so does A, and at A = 0, the mean �eld method is no longerappliable. What happens is that the non-leading terms tend to beomesingular. For example, the seond term in eq.(35) for the zero point energy,21



whih was negleted ompared to the �rst term, blows up at A = 0. Also,non-leading order terms in the large D expansion of S1 (eq.(31)) beomesingular in the same limit, invalidating the expansion. This an perhaps beguessed by setting A = 0 diretly in S1; the resulting expression loses its� dependendene and beomes ill de�ned. In ontrast, in the (�) phase, Astays �nite as � ! 0, and the non-leading terms in the mean�eld (large D)expansion remain well-de�ned.Summarizing the foregoing disussion, we onlude that, in the limit ofthe initial slope tending to zero:1) The indued slope A also goes to zero in the (+) phase, whih auses thebreakdown of the mean �eld method.2) In ontrast, A remains non-zero in the (�) phase, and there are no obviousproblems with the mean �eld method. Sine (�) is the energetially favoredphase, we believe that this is atually what happens.3) The string slope beomes a utuating dynamial variable (eq.(51)).The zero slope limit is ommonly thought of as the �eld theory limit. As� ! 0, the massive partiles deouple, and one is left with a �eld theorybuilt out of the massless partiles. If we aept this piture, it follows thatthe summation of the �eld theory graphs has led to string formation. Thesequene of the steps in the reasoning is the following: Start with the sumof planar open strings, and then take the zero slope limit. Order by orderin the perturbation expansion, we expet the string graphs to tend to the�eld theory graphs. However, this is a limit rather diÆult to de�ne leanlyin mathematial terms beause of the existene of the tahyon, whose masssquared goes to �1 in this limit, if the vetor meson mass is �xed at zero. If,however, instead of �rst taking the zero slope limit, one reverses the order ofthe steps by �rst summing over strings and then taking the zero slope limit,the mean �eld alulation goes through smoothly, and the �nal indued slopeis non-zero, signaling the formation of a new string.7. Conlusions And Future DiretionsIn this artile, we have applied the mean �eld method to the sum ofplanar open bosoni string diagrams on the world sheet. After a dualitytransformation, the problem was ast in a form very similar to the problemof summing planar �3 graphs [2-6℄, and the tehniques developed earlier ouldbe applied here. The results were also similar: The ground state of the systemturned out to be a ondensate of the open string boundaries. As a result, a22



new string was formed, with a slope greater than the initial slope. Even inthe limit of vanishing initial slope, the �nal slope remained non-zero.We end by listing some remaining open problems. We would like to iden-tify the zero slope limit of the initial string with the �eld theory of the zeromass vetor partile, but the existene of the tahyon makes this identi�a-tion problemati. A future projet is to apply the methods developed hereto the tahyon free superstrings. Another problem is the uto� dependeneof the ground state energy given by eq.(42). In referene [6℄, a similar uto�dependene was anelled by introduing a bare mass term for the � �eld.Sine here our starting point is already a string theory, we do not have thisfreedom initially. We ould, nevertheless, introdue a ounter term at theend. This then brings up the question of the �nite part of the ground stateenergy left over after the anellation of the uto� dependene. We remindthe reader that in the usual treatment of the bosoni string, this �nite part isrelated to the interept and it is not arbitrary. In the lightone formulation,it is determined by requiring Lorentz invariane [15℄. This brings up anotherimportant open problem; namely, the Lorentz invariane of the string thatemerges after the ondensation of the boundaries. If the interept of thisnew string is determined by Lorentz invariane, this would shed light on thequestion of tahyon ondensation in the open string [10℄. We hope to addressat least some of these problems in the future.Note Added:After �nishing this paper, referene [18℄ was brought to my attention.There is onsiderable overlap between this referene and the present artile.Both piees of work takle the problem of summing planar strings on theworld sheet using the mean �eld approximation, and both �nd ondensationof boundaries and a new string with inreased slope. There are, however,several important di�erenes in the treatment of the problem. For example,in this artile, unlike in [18℄, the string boundary onditions are imposed bymeans of Lagrange multipliers, and before applying the mean �eld approxi-mation, Neumann onditions are replaed by Dirihlet onditions by meansof a duality transformation. Also, some of our onlusions di�er: Referene[12℄ �nds a free string at the end of the summation, whereas we �nd a moreompliated string with a utuating dynamial slope. Furthermore, in on-trast to [12℄, starting with zero slope (�eld theory), we �nd string formation.These di�erenes in the �nal result are probably due to the di�erenes in the23
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